
Addressing the complexity of HL7v3 Standards

Standards are the basis for interoperability in any technology stack. As an industry, stan-

dards provide the basis for many of the successful technologies that are in use today. Users

can view web pages, check e-mail and can share files between many different systems

thanks to well defined data exchange formats.

Very few developers that use these standards based interfaces actually deal with the raw

interfaces themselves. Developers rely on Application Programming Interfaces (API) to ab-

stract the details away from the developer.

In the healthcare industry, Health Level 7 (HL7) provides a series of messaging standards

known as “Version 3” (HL7v3). These standards provide a rich information model intended

to guarantee the semantic interoperability of health systems. Although HL7 standards are

robust, and well defined, very few APIs exist. Developers are stuck learning the complex

nuances of the raw HL7v3 standard.

In 2009, a team of students, faculty, and lab staff developed and released the MARC-HI

Everest Framework. The Everest Framework provides a consistent, flexible and well docu-

mented API that eases the burden of learning the raw HL7v3 standard.

this report:

Addressing Complexity P.1
From MIF to Code P.2

Everest Architecture P.3
Next Steps P.4

A FLEXIBLE SOLUTION

The MARC-HI Everest Framework is

designed with future versions of the

HL7v3 standard in mind. The frame-

work is comprised of several generic

libraries that interact with automati-

cally generated code. When a stan-

dards development organization

(SDO) releases a new version of their

standard, developers can create new

versions of Everest on their own.

THE NEED FOR AN API

Utilizing XML Schema (XSD) files that

are released by HL7 and Canada

Health Infoway (CHI) is tempting.

However this approach has several

limitations.

 Important information related

to the message structures is lost

within the XSDs.

 Common classes are not reused

across interactions as XSD has

no facility for template or ge-

neric classes.

 Generating from an XSD tightly

couples your application to one

version of the ITS.

The Everest Framework
A flexible Application Programming Interface for HL7v3 messaging

Technical Report, April 2011

From MIF to C# and beyond

HL7v3 standards are actively being improved

and developed by a dedicated team of vol-

unteer clinicians , modelers, and software

implementers. The complexity of v3 comes

from the fact that the implementable arti-

facts (the ITS) are not normative.

Rather, in HL7v3, the models are normative.

Using a form of restrictive inheritance, mod-

elers derive a series of Domain Information

Models (DMIM) from the Reference Infor-

mation Model (RIM). Domain models de-

scribe which components of the RIM are

applicable to a particular healthcare domain.

From a DMIM, modelers use Microsoft Visio

to diagram a Refined Message Information

Model (or RMIM). RMIMs describe the nec-

essary data to complete an event within the

healthcare system (for example, discharging

a patient).

After generating the RMIM, modelers run a

utility known as the v3Generator to create a

series of machine consumable XML files

known as Model Interchange Format (MIF)

files.

These MIF files can’t be used directly by pro-

grammers as they merely describe the struc-

ture of each message component.

Making the MIF files Usable

To make MIF files usable, they must first be

converted to an implementable technology.

HL7 defines an XML based Implementable

Technology Specification (ITS) which uses

XML Schema (XSD) to describe classes.

Everest uses a slightly different approach.

Using the General Purpose MIF Renderer

(GPMR) utility, developers consume a series

of MIF files and generate one of a variety of

usable outputs. These include C#, HTML (for

documentation), XSD and XSL outputs.

Each of these outputs can be used in a vari-

ety of manners. The MARC-HI group uses the

HTML output of GPMR on our Wiki, the XSL

output in our HIAL and the C# output in a

variety of reference implementation pro-

jects.

 Generating the API

When GPMR generates C# code, it appends

useful functions and hides certain complexi-

ties of the v3 standard.

For example, if a message element has a

fixed value, GPMR will ensure that develop-

ers don’t see the option to set a particular

field.

GPMR can also optimize the v3 structures

that are defined in the MIF. For example, if

two or more modelers use slightly different

“Author” structures, GPMR can combine the

two different structures into one.

In addition to optimizing message structures,

GPMR does not assume that messages will

be sent using XML. GPMR appends meta-

data attributes to each generated property

and class that describe its logical structure

name (rather than physical XML name). This

means that developers can choose, at run-

time, which output format they would like to

communicate.

Model Interchange Format is published by SDOs and defines HL7v3

models. Everest utilizes these files to generate a variety of artifacts.

Principles of Everest

Students are the foundation of what

the MARC-HI and iDeaWorks does. It

became apparent very early on that

students on a 4 month co-op term

were having difficulty learning the

necessary HL7v3 and XML skills nec-

essary to become productive.

Developer productivity became the

guiding principle of the Everest

Framework. Everest code was de-

signed to follow best practices

for .NET applications and follow

many of the naming conventions.

This makes it easy for skilled .NET

developers to leverage their existing

experience to start solving problems

and stop worrying about the stan-

dards.

Everest is designed to integrate with

existing .NET facilities such as the

Windows Communication Founda-

tion (WCF) and follows stan-

dard .NET configuration practices.

Why not Java?

Many times we’ve been asked why

there is no Java version of the Ever-

est Framework.

The answer is simple, Everest is de-

signed with the developer in mind.

Doing a Java version of Everest

would require a rewrite as Java de-

velopers follow different patterns

than .NET developers.

Also, we feel that focusing on one

technology stack allows us to make a

better framework as developers can

become experts rather than a “jack

of all trades”.

Flexible runtime architecture
HL7v3 standards are in a constantly evolving

state. That combined with the fact that Ever-

est may be utilized by any number of differ-

ent software vendors made it necessary to

make the Everest flexible.

Using the Everest Framework, developers

write a RIM graph that transforms their ap-

plication data into the RMIM classes gener-

ated by GPMR. Developers use a Formatter

to graph their RMIM structures into an ITS (a

process called “graphing”).

Once graphed, an RMIM class can be sent to

a remote system using a Connector which

ensures that the message instance is re-

ceived by the remote party.

Formatters and Connectors can be swapped

out at runtime, making it possible to write

code to send/receive messages using files.

Using the same program, a user could con-

figure sending messages to/from a WCF end-

point.

Using GraphAides and the data-types library,

it is possible for one application using one

standards release to support datatypes R1

and R2 (ISO harmonized).

Each of the components of Everest can be

swapped at runtime, and with the embed-

ded Meta-Data on RMIM and DataTypes,

further flexibility can be gained through

clever reflection algorithms.

Providing faster serialization via CodeDom

HISTORY

The Everest Timeline

Nov 2008 - Proof of Concept API

Jan 2009 - GPMR Started

Jul 2009 - GPMR Deki Renderer

Aug 2009 - Demo for Canada Health

Infoway

Sept 2009 - First public release

Nov 2009 - Canada Health Infoway

Sponsored Release

Jan 2010 - Structure Optimizer for

GPMR

Jul 2010 - Multithreaded Formatters

Nov 2010 - Universal Messages

Added

Jan 2011 - Release Candidate 1

UNIVERSAL

Support for HL7v3 NE2008

Everest Release Candidate 1

(released in January 2011) includes

experimental support for HL7v3 uni-

versal messages. This means that

Everest is able to communicate with

systems developed for markets out-

side of Canada.

It is also possible to communicate

with IHE PIX/PDQv3 registries using

the Everest Framework. Samples

are available in the Release Candi-

date 1 release of the MARC-HI Ever-

est Framework

Q: Why does the first serialization of a message take so long?

The reason for this behavior is the way that Everest serializes messages. When a for-

matter first encounters a message type, it dynamically generates the necessary code to

serialize the message structure. Whenever the formatter is asked to serialize a mes-

sage with the same structure it reruns the

code it generated before.

The graph to the right illustrates the seri-

alizations per second from a sample of 10

random message types serialized on 10

threads. The performance of the format-

ter increases the more the formatter en-

counters similarly structured messages.

0

50

100

0 10 20

Se
ri

al
iz

at
io

n
s

/
Se

c

Time (s)

The Everest Team

Faculty: Duane Bender, Brian Minaji,

Mark Yendt

Lab Staff: Justin Fyfe, Jaspinder

Singh, Trevor Davis

Students: Andria Chiravalle, Jose

Aleman, Terence Cook, Brian VanAr-

ragon, Stuart Philp, Craig Clark, Mat-

thew Ibbotson, Corey Gravelle

Download:

everest.marc-hi.ca

Everest documentation and code continues to be developed and tested. Everest 1.0 (with

GPMR 1.0) will be ready early 2012.

Release of Everest 1.0

Everest supports pan-Canadian Standards (pCS) R02.04.01, R02.04.02, R02.04.03 and Universal

NE2008 messages. Work is being done to support CeRX4.3 and NE2009/2010 messages.

Testing and integration of CeRX 4.3, NE2009 and NE2010

The Everest team is currently working on a series of Workflow Foundation (WF) activities.

These activities will allow developers to drag-and-drop Everest messages onto their workflows.

Custom Everest Workflow Foundation Activities

Next Steps and Upcoming Features

iDeaWorks Mohawk College

135 Fennell Ave West

Hamilton, Ontario Canada

L9C 1E9

905.575.1212 x4738

mohawkcollege.ca/ideaworks

